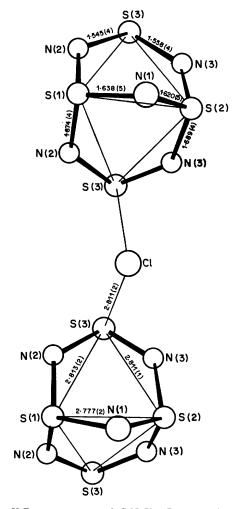
A Bicyclic S–N Cation: The Synthesis and Crystal Structure of S₄N₅Cl

By TRISTRAM CHIVERS* and LEE FIELDING

(Department of Chemistry, The University of Calgary, Calgary T2N 1N4, Alberta, Canada)


Summary An X-ray crystallographic study of S4N5Cl, prepared from S₃N₃Cl₃ and Me₃SiNSNSiMe₃, has revealed a predominantly ionic structure involving the new S-N cation, S₄N₅+.

CURRENT interest in binary S-N cations with planar, monocyclic structures, e.g. $S_3N_2^{+,1,2}S_5N_5^{+,3,4}$ and $S_4N_4^{2+,5}$ and in halogenated derivatives of polymeric sulphur nitride⁶ prompts us to report the synthesis and X-ray structural determination of a new S-N halide, S_4N_5Cl , which contains the first reported bicyclic S–N cation, $\rm S_4N_5^+.$

Equimolar amounts (3.88 mmol) of S₃N₃Cl₃ and Me₃-SiNSNSiMe₃ at 23 °C in carbon tetrachloride (55 ml) produced golden-brown crystals of S_4N_5Cl in 63% yield after 12 h.† Complete elemental analyses were in excellent agreement with the empirical formula. The mass spectrum (70 eV) exhibited a very weak molecular ion peak, m/e 233 $(S_4N_5^{35}Cl^+)$, and a strong peak at m/e 198 $(S_4N_5^+)$. The i.r. spectrum (Nujol) showed bands at 1140w, 1050vs, 1023s, 966vs, 800w, 720w, 697s, 628w, 584s, 481m, 462m, 422s, 408m, and 308w cm⁻¹. The Raman spectrum had bands at 1114vw, 1015vs, 958s, 716w, 688w, 587m, 474m, 457sh, 398w, 304m, 199vs, and $173m \text{ cm}^{-1}$. Molecular weight determinations by vapour-phase osmometry in CS, suggested a monomeric structure in solution (found: 222, 2.17 mg ml⁻¹; 228, 4.07 mg ml⁻¹; calc: 233.7). An X-ray crystal structure determination, however, unexpectedly revealed a polymeric predominantly ionic structure in which $S_4N_5^+$ cations are symmetrically bridged by Cl⁻ ions (see Figure).

Crystal data: S_4N_5Cl , M = 233.74, orthorhombic, spacegroup Pnma, a = 17.491(17), b = 7.819(2), c = 4.838(4) Å, U = 661.7 (5) Å³, Z = 4, $D_c = 2.346$ g cm⁻³. A total of 1162 independent reflections $[I > 3\sigma(I)]$ were collected with an Enraf-Nonius CAD 4 diffractometer employing the θ -2 θ technique with graphite-monochromated Mo- K_{α} radiation. The structure was solved by direct methods and Fourier techniques and all atoms were refined anisotropically to give an R-factor of 0.066. The cation is bisected by a crystallographic mirror plane through S(1)S(2) and N(1); other mirror planes at $y \ 0.25$ and 0.75pass through the cations and anions.

In contrast to the isoelectronic species $S_4N_5O^-$, in which the exocyclic oxygen atom is connected to a sulphur which is bonded to three nitrogen atoms,7 the chlorine atoms in S_4N_5Cl symmetrically bridge S_4N_5 units via the sulphur atoms bonded to two nitrogens. The S(3)-Cl distance is 2.811(2) Å compared to 2.084 and 2.150 Å for $S_3N_3Cl_3^8$ and $2\cdot 168~{\rm \AA}$ in ${\rm S_3N_2Cl^{+,9}}$ Significantly, the Cl- ion in ${\rm S_3N_2-}$ Cl+Cl- is at distances in the range 2.90-3.04 Å from the three sulphur atoms of the cation.⁹ Thus, it seems reasonable to view S_4N_5Cl as consisting of $S_4N_5^+$ cations bridged by Cl- ions. This conclusion is further supported by the preparation of $\rm S_4N_5^+SbCl_6^-$ as a yellow powder from $\rm S_4N_5Cl$ and antimony pentachloride in methylene chloride. The positions and intensities of the i.r. bands of the cation in this

N(3), 108.7(2); N(2)-S(3)-N(3), 119.5; S(3)-Cl-S(3), $85.39(6)^{\circ}$.

salt are virtually identical to those in S_4N_5Cl . In addition, a very strong band at 342 cm^-1, attributable to ν_3 of ${\rm SbCl}_6\text{--},$ is observed. The short S-N(3) distance in $\rm S_4N_5^+$ and the long-range interactions with Cl⁻ suggest some preferential localisation of cation charge on these sulphur atoms [compared with S(1) and S(2)]. The average S-N bond length (1.62 Å) is very close to that observed for S_4N_4 $(1.62 \text{ Å})^{10}$ and $S_4N_5^-$ (1.63 Å),¹¹ but significantly longer than found in planar, monocyclic S-N cations, e.g. S₃N₂⁺ (1.58 Å),¹ S₄N₃⁺ (1.55 Å),¹² and $S_5N_5^+$ (1.54-1.56 Å).^{3,4} Within each $S_4N_5^+$ cage, there are five $S \cdots S$ separa-

tions in the narrow range 2.78-2.81 Å and the sixth pair of

[†] CAUTION: S4N5Cl may explode under the influence of heat or pressure e.g. during m.p. determination or preparation of an i.r. mull.

sulphur atoms S(3) is 4.01 Å apart. These values compare with S · · · S distances of 2.63-2.74 Å for S4N5O-,7 2.58-2.70 Å in $\rm S_4N_4, {}^{10}$ and 2.71–2.75 Å in $\rm S_4N_5^{-,11}$ The structure of $S_4 N_5^{-}$, *i.e.* a regular tetrahedron of sulphur atoms in which five of the edges are bridged by nitrogen,¹¹ can be rationalized using Banister's approach.¹³ The 50 valence electrons can be accommodated by allocating a lone pair to each atom, a pair of electrons to each S-N bond, and an electron pair of higher energy to each $S \cdots S$ interaction in the S_4 tetrahedron. Thus, in $\mathrm{S}_4\mathrm{N}_5^+$, with two electrons less, the existence of only five $S \cdots S$ interactions is to be expected.

The easy preparation of S4N5Cl provides an alternative to $S_4N_5^-$ salts¹⁴ for the synthesis of other derivatives of the S_4N_5 cage. Such reactions are being studied.

We are grateful to Dr. Jan Troup (Molecular Structure Corporation, Texas) for the X-ray structure determination and the National Research Council of Canada for financial support.

(Received, 28th November 1977; Com. 1220.)

- ¹ R. J. Gillespie, P. R. Ireland, and J. E. Vekris, *Canad. J. Chem.*, 1975, 53, 3147. ² H. W. Roesky and A. Hamza, *Angew. Chem. Internat. Edn.*, 1976, 15. 226.

- ² H. W. Roesky and A. Hamza, Angew. Chem. Internat. Edn., 1976, 15. 226.
 ⁹ H. W. Roesky, W. Grosse-Böwing, I. Rayment, and H. M. M. Shearer, J.C.S. Chem. Comm., 1975, 735.
 ⁴ A. J. Banister, J. A. Durrant, I. Rayment, and H. M. M. Shearer, J.C.S. Dalton, 1976, 928.
 ⁵ R. J. Gillespie, D. R. Slim, and J. D. Tyrer, J.C.S. Chem. Comm., 1977, 253.
 ⁶ G. B. Street, W. D. Gill, R. H. Geiss, R. L. Greene, and J. J. Mayerle, J.C.S. Chem. Comm., 1977, 404; G. B. Street, R. L. Bingham, J. I. Crowley, and J. Kuyper, *ibid.*, p. 464; M. Akhtar, J. Kleppinger, A. G. MacDiarmid, J. Milliken, M. J. Moran, C. K. Chiang, M. J. Cohen, A. J. Heeger, and D. L. Peebles, *ibid.*, p. 473.
 ⁷ R. Steudel, P. Luger, and M. Bradaczek, Angew. Chem. Internat. Edn., 1973, 12, 316.
 ⁸ G. Wiegers and A. Vos, Acta Cryst., 1966, 20, 192.
 ⁹ E. Zalkin, T. E. Hopkins, and D. M. Templeton, Inorg. Chem., 1966, 5, 1767.

- ¹⁰ E. Zaikin, I. E. riopkins, and D. M. Templeton, *Inorg. Chem.*, 1900, 5, 1767.
 ¹⁰ B. D. Sharma and J. Donohue, Acta Cryst., 1963, 16, 891.
 ¹¹ W. Flues, O. J. Scherer, J. Weiss, and G. Wolmershauser, Angew. Chem. Internat. Edn., 1976, 15, 379.
 ¹² J. Weiss, Z. anorg. Chem., 1964, 333, 314.
 ¹³ A. J. Banister, Nature Phys. Sc., 1972, 239, 69.
 ¹⁴ J. Bojes, P. M. Boorman, and T. Chivers, Inorg. Nuclear Chem. Letters, 1976, 12, 551; J. Bojes and T. Chivers, J.C.S. Chem. Comm., 977, 452. Inorg. Chem. 1978, 17 in the press.
- 1977 453; Inorg. Chem., 1978, 17, in the press.